On Schur multiplier and projective representations of Heisenberg groups

نویسندگان

چکیده

In this article, we describe the Schur multiplier and representation group of discrete Heisenberg groups their t-variants. We give a construction all complex finite-dimensional irreducible projective representations these groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Representations of Heisenberg Groups

This Heisenberg group is a 2-step nilpotent Lie group and is important in the study of toroidal compactifications of Siegel moduli spaces. In fact, H (g,h) R is obtained as the unipotent radical of the parabolic subgroup of Sp(g+h,R) associated with the rational boundary component Fg ( cf. [F-C] p. 123 or [N] p. 21 ). For the motivation of the study of this Heisenberg group we refer to [Y4]-[Y8...

متن کامل

on the order of the schur multiplier of a pair of finite $p$-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2021

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2021.106742